
On-Board Model Based Fault Diagnosis

for CubeSat Attitude Control Subsystem:

Flight Data Results

Ryan Mackey, Allen Nikora,

Cornelia Altenbuchner, Robert Bocchino,

Michael Sievers, Lorraine Fesq

Ksenia O. Kolcio, Matthew J. Litke,

Maurice Prather

Copyright 2021. All rights reserved.

Government sponsorship acknowledged.

Project Overview

Objectives

• Demonstrate MONSID reasoner on ASTERIA XACT Attitude

Control Subsystem (Blue Canyon Technologies)

• Model XACT and integrate with ASTERIA flight software

• Perform robustness and flight readiness tests

• Benchmark computing resource impacts

• Demonstrate on ASTERIA System Testbed (with captured

data) and on board the spacecraft

• Include MONSID in demonstration of closed-loop autonomy

Goals

• Provide a trusted, reusable, model-based

on-board diagnostic reasoning capability

• Detect failures and mission threats

• Estimate remaining capability in real time

• Enable on-board autonomy to respond to

unknown events

The ASTERIA Spacecraft provided a unique opportunity

to demonstrate on-board model-based diagnosis

supporting complete on-board autonomy

• Extended Mission Experiment: Ability and willingness to host
reasoning software as payload

• Capable spacecraft with complex subsystems and behavior
(ACS chosen for study), able to gather full rate data

• Mature testbeds and test procedures

• Modular flight software architecture (F Prime)

MONSID (Model-based Off-Nominal State Identification and Detection) consists of:

❖Diagnostic Engine (application independent)

❖Model capturing nominal system behavior (application specific, network of hardware
components)

▪ Sensor and Command data are inputs to MONSID Model

❖Inputs are propagated through model, producing multiple estimates of state variables

❖Diagnostic engine flags inconsistencies in state variable estimates

❖Utilizes Constraint Suspension technique to detect and isolate faults

▪ MONSID provides a synchronous report of healthy/failed system state

▪ Compact, modular API capable of operating on resource-limited platforms

MONSID Background

• Components:

‒ Associated with system state variables (vertices) and
constraints that capture behavior

‒ Components are not entirely stateless, but may
include some “memory” of previous state estimates

‒ Components have a notion of “input” (left) vs. “output”
(right), roughly equivalent to functional flow

• Constraints:

‒ Constraints are equations that relate state variables
to one another

‒ Forward constraints capture input to output behavior

‒ Reverse constraints (output to input) are also needed
to verify model consistency

‒ No restrictions on constraint format

• “Sensors:”

‒ Provide state estimates to model from physical
system (e.g., sensor values)

‒ Commanded and reported hardware data, FSW
parameters

MONSID Model Description

Model Layout

Sensor

• Input and output nodes:

‒ Each holds two or more versions of a state variable
estimate for consistency checks

‒ Faults are indicated when discrepancies exceed a
tolerance threshold

• Starting assumptions: Bounding the system under study (in this case, restricted to failures of XACT
components)
❖ Identify relevant telemetry and control signals

❖ Break up model into components consistent with our desired level of diagnosability and data availability

❖ Associate signals with components – follow system state effects model, and introduce hidden state variables (viz.,
internally computed only) as needed

❖ Where necessary create “pseudocomponents” – components that model dynamic and environmental state, needed by
other components. These do not represent physical hardware.

❖ Model complexity trades: 1. Minimizing connections leads to leaner models; 2. Sensor placement determines
diagnosability.

• Develop constraints from first principles and example data, one component at a time
❖ Develop both forward constraints (predictive) and reverse constraints (deductive)

❖ Constraints need not be symbolic inverses of each other – apply workarounds if reverse constraints cannot be
calculated or do not exist

❖ Need to account for different spacecraft modes and hardware operational modes

❖ Verify that constraints are protected against bad data or numerical singularity / divide-by-zero conditions

❖ Check constraints against test data, one component at a time

❖ Begin with simple constraints, and add complexity as needed to increase fidelity

XACT Modeling Approach

• Prove that modeling a real subsystem
(BCT XACT) is feasible, affordable, and
effective

• Individual, reusable model components
created and unit-tested first

• Components placed into system topology,
as shown here

• Final model size:
❖ 99 input nodes (94 sensor / command

inputs plus 5 hidden state variables)

❖ 36 output nodes

❖ 12 components:

▪ 3x Reaction Wheels

▪ 3x Tachometers

▪ 1 Magnetorquer block

▪ 1 Sun Sensor

▪ 1 IMU

▪ 1 Star Tracker

▪ 1 Sun Visibility Model (pseudocomponent)

▪ 1 Dynamics and Kinematics
pseudocomponent

XACT Model Summary

Effectors Sensors

• After completion, tested
model with captured data
from ASTERIA – revealing
previously unknown events

• Results verified by running
MONSID in developer
mode and as part of
ASTERIA FSW on
ASTERIA System Testbed

• Shown here: Detection
and isolation of a (very)
brief pointing knowledge
inconsistency during slew

• Caused by momentary
change in Star Tracker
state providing an incorrect
transient output (ignored
by XACT algorithms, but
still reported)

• Similar behavior has been
seen on other missions

Model Testing: Flight Data

Discrepancy in

pointing estimates

Detection of node

inconsistency

• Shown here: Detection
and isolation of
suspected reaction wheel
saturation discovered in
captured flight data

• Detected discrepancies
include mismatch in
actual torque, as
estimated from torque
command and wheel
RPM

• Isolation step confirms
that only one wheel
(RW3) is involved, and no
other hypothesis explains
this observation

Model Testing: Flight Data

• To enable safe fault
detection testing on
board, MONSID FSW
was provisioned with a
commandable fault
injection capability

• This biases sensor data
prior to analysis by
MONSID

• Shown here: Bias
introduced in one IMU
channel

• Because such a change
should propagate
throughout the system,
this results in several
discrepancies, as the
model now predicts a
different overall state

• This poses an interesting
challenge for isolation

Model Testing: Seeded Faults

• In this case, the IMU is
flagged as the most
probable source of the
fault

• However, other
components could, in
theory, lead to this
outcome

• MONSID also found
the degenerate case
where RWAs had all
failed in a way that
cancelled out other
potential signals, or in
a way that a torque rod
problem could mask

• This is of low
probability, but
technically correct –
will be filtered out in
updates to the
MONSID engine

Model Testing: Seeded Faults

• ASTERIA’s F Prime-based flight software enabled an effective method of MONSID execution
inside the control loop
❖MONSID primarily consumes data from the Attitude Control Components (the XACT ACS manager), but

may also access commands sent to ACS
❖ ”Splitter components” used to send data from sources to MONSID without interrupting existing dataflows
❖MONSID implemented in a fully flight-ready configuration, sending summary results through telemetry

while saving detailed information to disk for verification purposes

• MONSID itself managed by a new F Prime component (the ACS Health component)
❖ Implemented a very simple behavior for MONSID, requiring only two commands (Start and Stop)
❖This approach can be retrofitted to many F Prime FSW deployments

Flight Software Integration

MONSID OFF

MONSID
Establishing

State

Start
command Establish failure

or
Stop command

or
Time reference

inconsistent

MONSID
Running

State
established

Estimate XACT
State

Update
Persistence

Buffer

Compute
Conclusion

Instantaneously:
XACT consistent or

not?

Store last N
instantaneous

results

When number of
faults exceeds

threshold, emit
fault estimate

MONSID
Behavior

ACS

Health

Splitter
State Database

MONSID-FSW
Relevant Data Flows

• MONSID-FSW was also combined with two other reasoners (AutoNav and
MEXEC) to demonstrate closed-loop ability to ensure activity completion
❖Combined demonstration would exceed computational limits of ASTERIA avionics

❖Tested instead on workstation testbed, leveraging MONSID fault injection capability

Closed-Loop Autonomy

The three notches are injected faults of the RW1 tachometer
Noise events on RW1 and RW3 are real…

MONSID Toolkit displaying detection and diagnosis result during first fault episode
Red box indicates the diagnosis (RW1 Tachometer)

• Spacecraft Behavior:
❖ (Re-)Discovered that spacecraft magnetic torque due to its quiescent

dipole was much higher than expected
❖ Used the onboard magnetometer estimate instead of model predicts in

the MONSID model, departing from the XACT control laws

• Testbed Idiosyncrasies:
❖ In verification testing, discovered a (harmless) difference in NaN

handling between software and avionics testbeds

• Performance Benchmarking:
❖ Verified that MONSID impact on system resources is modest – 160 kB

code base, 1.2 MB increase in resident memory, and < 5% CPU in
worst case testing

Other Findings

• While a mission-ending spacecraft anomaly prevented actual on-board testing,
ASTERIA still provided an excellent maturation opportunity for model-based fault
management

❖Enabled by access to mission resources, from controllers and subsystem experts to
software and hardware testbeds, from established mission processes and norms to flight
data on demand

• MONSID demonstrated accuracy and reliability on captured flight data

❖Focus on testing and test realism resulted in numerous discoveries, including spacecraft
behaviors and unknown benign faults, latent defects in system testbeds, hidden
vulnerabilities in technology

• Demonstrated a functioning flight software implementation, feasible within the
requirements and resources of a typical flight project

❖Modular flight software architecture, provided by F Prime, proved sufficiently flexible to
support model-based fault diagnosis, and simplified integration and test

❖This approach can be applied to many other missions using F Prime

• There are no remaining hurdles to implementing MBFM in flight

Conclusions

